hidden hidden hidden hidden hidden hidden hidden hidden
Oxford location
view map

Edmund Cartwright House, 4 Robert Robinson Avenue
Oxford Science Park, Oxford, OX4 4GA, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Cambridge location
view map

Suite 4, The Mansion, Chesterford Research Park
Little Chesterford, Essex, CB10 1XL, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Contact us
more

If you have any enquires or questions, feel free to get in touch with Oxford Nanopore.

Follow us on Twitter
Apply to the MAP

The MinION™ Access Programme (MAP) is a community-focused access project which started in Spring 2014. The philosophy of the MAP is to enable a broad range of people to explore how the MinION may be useful to them, to contribute to developments in analytical tools and applications and to share their experiences and collaborate. Listening to this community helps Oxford Nanopore provide continuous improvements to our products and support. To apply to join the MAP click here.

Technology advisory board - Professor Daniel Branton
Professor Daniel Branton
Professor Daniel Branton
Harvard University

Professor Branton is Higgins Professor of Biology Emeritus at Harvard University. His research areas include nanopore technology and single molecule probing, molecular organisation of cell membranes and cell biology. He has held positions at Harvard University in Cambridge, MA and the University of California, Berkeley.

The Harvard Nanopore Group
The Harvard Nanopore Group is led by Professor Daniel Branton and Professor Jene Golovchenko. The group has been investigating electronic methods for very rapidly detecting, characterising and sequencing single molecules of DNA. A detector consisting of a single nanopore in a thin, insulating, solid-state membrane could mimic the function of alpha hemolysin pores in lipid bilayers, while serving as a platform for integrated electronic detection devices.The group’s research has led to the development of a new ion beam based method for creating nanoscale structures in semiconductors called "ion beam sculpting".

The Group is also developing other applications that may utilize the sensitivity and speed of nanopore probing, and is investigating the physics of DNA polymer movement through the confined space of a nanopore, coordinating the application of material science tools to fabricate solid-state nanopores, and developing the associated biochemistry, molecular biology, electronics, and signal processing to effect molecular recognition.
http://www.mcb.harvard.edu/branton/