hidden hidden hidden hidden hidden hidden hidden hidden
Oxford location
view map

Edmund Cartwright House, 4 Robert Robinson Avenue
Oxford Science Park, Oxford, OX4 4GA, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Cambridge location
view map

Suite 4, The Mansion, Chesterford Research Park
Little Chesterford, Essex, CB10 1XL, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Contact us

If you have any enquires or questions, feel free to get in touch with Oxford Nanopore.

Follow us on Twitter
Apply to the MAP

The MinION™ Access Programme (MAP) is a community-focused access project which started in Spring 2014. The philosophy of the MAP is to enable a broad range of people to explore how the MinION may be useful to them, to contribute to developments in analytical tools and applications and to share their experiences and collaborate. Listening to this community helps Oxford Nanopore provide continuous improvements to our products and support. To apply to join the MAP click here.

Technology advisory board - Professor David Deamer
Professor David Deamer
Professor David Deamer
University of California, Santa Cruz (UCSC)

Professor David Deamer was founder of the UCSC Nanopore Project, which is now co-directed by Professor Mark Akeson and involves faculty collaborators from UCSC and other institutions. The project received a “$1000 Genome” grant from the NHGRI in 2005.

In 1996, Professor Deamer was a co-author on the paper that first demonstrated single-molecule analysis of nucleic acids using the alpha hemolysin nanopore.  Professor Deamer and his collaborators now investigate physical properties of ‘single-stranded’ DNA and RNA molecules, with the aim of using alpha hemolysin to determine base sequences of nucleic acids. The team uses two approaches to analyze DNA in this way. In the first, a constant applied voltage pulls single-stranded DNA or RNA through the pore, permitting discrimination among single polymer molecules based on their nucleotide composition. The second approach is to capture a single duplex DNA molecule in the channel vestibule. Duplex DNA is too large to pass through the nanopore, but the molecular motions of the base pairs occupying the vestibule can be monitored in real time for tens-to-hundreds of milliseconds. In this voltage-pulse or 'tasting' mode, single base-pair resolution is achieved, suggesting that nanopore detection of single nucleotide polymorphisms (SNPs) is feasible.