hidden hidden hidden hidden hidden hidden hidden hidden
Oxford location
view map

Edmund Cartwright House, 4 Robert Robinson Avenue
Oxford Science Park, Oxford, OX4 4GA, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Cambridge location
view map

Suite 4, The Mansion, Chesterford Research Park
Little Chesterford, Essex, CB10 1XL, UK

Tel: +44 (0)845 034 7900 | Fax: +44 (0)845 034 7901

Contact us

If you have any enquires or questions, feel free to get in touch with Oxford Nanopore.

Follow us on Twitter
Apply to the MAP

The MinION™ Access Programme (MAP) is a community-focused access project which started in Spring 2014. The philosophy of the MAP is to enable a broad range of people to explore how the MinION may be useful to them, to contribute to developments in analytical tools and applications and to share their experiences and collaborate. Listening to this community helps Oxford Nanopore provide continuous improvements to our products and support. To apply to join the MAP click here.

Intellectual property

Oxford Nanopore has a broad patent portfolio, through in-house development and licensing agreements with third parties. Oxford Nanopore has an intellectual property portfolio of more than 300 issued patents and patent applications in over 80 patent families. These cover all aspects of nanopore sensing including fundamental patents for nanopore sensing, and patents relating to DNA-sequencing.

Oxford Nanopore is developing a platform technology that may be adapted with a variety of nanopore sensors for the analysis of different molecules. The IP portfolio reflects the broad range of expertise and active R&D projects that are in progress at Oxford Nanopore and supported research within the laboratories of our academic collaborators. These projects include the development of nanopore DNA-sequencing technology (exonuclease and strand sequencing), protein analysis, and the development of solid-state nanopores including graphene.

The Company was founded on science from the laboratory of Professor Hagan Bayley of the University of Oxford, and maintains a broad range of IP licenses with this institution. In 2008, a series of agreements were announced to exclusively develop and commercialise discoveries from nanopore-research laboratories at Harvard (including discoveries at the US National Institute of Standards and Technology, NIST) and University of California Santa Cruz. These extended a portfolio that also includes Texas A&M and the University of Massachusetts Medical School.  

The following themes are included in Oxford Nanopore's patent portfolio:

  • DNA base identification using a biological nanopore
  • Characterisation of individual polymer molecules based on monomer-interface interactions
  • Addition of adapters to nanopores for sensing
  • Genetically modified nanopores for sensing
  • Combining nanopores and enzymes for sensing
  • Use of molecular motors in combination with nanopores
  • Localising polymerases to a surface, including pore-bound localisation
  • Use of solid-state nanopores for detecting labelled ssDNA and dsDNA
  • Use of solid-state devices to control movement of polymers
  • Detection and positional measurement of probes on a DNA strand as the strand passes through a nanoscale detector
  • Methods of fabricating solid-state nanopores including multi-layered devices
  • The use of functionalised solid-state nanopores for molecular characterisation, including graphene, tunnelling currents and nanotubes
  • Time-based multiplexed nanopore measurements on a single chip, including the incorporation of 96 well plate
  • Use of voltage to control DNA under feedback
  • Measurement of DNA interacting with a limited volume, such as a polymerase on a surface
  • Planar lipid bilayer array chip for parallel sensing from multiple channels
  • Sequencing by means of detection of products of enzymatic action on DNA/RNA using a nanopore
  • The use of multiple 'nodes' to analyse a single sample in a federated/clustered manner to reduce the time to result, and improve operating efficiencies
  • Methods and algorithms for nanopore signal analysis
  • Nanopore arrays/nanopore array structures